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Introduction

ISTORICALLY, the control allocation problem has been ap-
proached by assuming that aerodynamic control effectors pro-
duce control moments that are linear functions (at least locally) of the
control surface deflection. Whereas this approach may be acceptable
for nearly all aircraft under nominal flight conditions when there are
no failed control surfaces, the occurrence of one or more failed con-
trol effectors may result in a situation where the linear assumption is
no longer valid. This is because the dominant effects of most control
surfaces are approximately linear over normal operating ranges in
at least one axis; however, off-axis effects can be nonlinear. When
a control effector fails, the resulting rolling, pitching, and yawing
moments produced by the failed effector must be accommodated by
reconfiguring the remaining healthy control effectors. For some fail-
ures, one or more of the remaining effectors may be driven toward a
position limit to compensate for the failed effector. The behavior of
the control moment curve for many aircraft in regions near position
limits tends become highly nonlinear. Furthermore, the failure of a
major linear effector in one axis may lead to the necessity of using
secondary nonlinear effects that are normally treated as disturbances
by the control system. Therefore, the linear model may introduce
significant modeling errors that result in incorrect control surface
deflections, and this may ultimately lead to loss of the vehicle.
Recently, Bolender and Doman! have shown that a piecewise
linear representation of the control moment curve accounts for the
nonlinearities inherent in aerodynamic data. The only requirement
is that the control moments generated by each effector be separable,
meaning that no aerodynamic interference occurs among the effec-
tors. The resulting control allocation problem was posed as a mixed-
integer linear program and solved using a public domain branch-
and-bound optimization code. The downside of this approach was
the length of time needed by the solver to find a solution, making
implementation in a digital flight-control system impracticable.
The intent of this Note is to show that the piecewise linear con-
trol allocation problem can be solved fast enough to be implemented
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in a digital flight-control system. The approach taken here differs
from the authors’ initial paper on this subject in two ways. The first
difference is a move away from the mixed-integer linear program-
ming form of the optimization problem and to a linear programming
formulation. The linear programming problem will be solved using
a modified simplex algorithm where a rule-based approach is em-
ployed to enforce the necessary adjacency constraints on the inter-
polating coefficients. The second difference is that we solve a mixed
optimization problem? as opposed to the solution of the multibranch
control allocation problem.* This allows us to achieve the same ob-
jective as before, but only having to solve one optimization problem
instead of two. We will compare the performance of the simplex
method with restricted basis entry rules to the mixed-integer formu-
lation and show that the two approaches give equivalent solutions to
the same set of control allocation problems. To perform this com-
parison, we will look at both closed-loop and open-loop control
allocation problems. In the latter case, a set of control allocation
problems are randomly selected and solved by each approach. For
the former, we compare the algorithms in a digital simulation of a
reentry vehicle on approach and landing.

Piecewise Linear Mixed Optimization
Control Allocation

The control allocation problem solved in Ref. 1 used two distinct
performance indices that were similar to those used in Buffington’s?
multibranch approach. However, instead of a linear relationship be-
tween the control effector displacements and the control moments,
a nonlinear relationship was used. Let the nonlinear vector-valued
function G(8) denote the relationship between the control effector
positions and their moments. The function G(6) maps R" into R™
where n > m, where n is the number of control effectors and m is the
number of controlled variables. Let dy.; denote the controlled vari-
ables. In this case, the controlled variables are the rolling, pitching,
and yawing moments. Buffington’s multibranch approach requires
that two optimization problems be solved. The first optimization
problem is called the control deficiency branch. The objective of
the control deficiency branch is to minimize ||W,(G(8) —dqes) |1
subject to position and rate constraints on §. The value of the per-
formance index for this optimization problem indicates whether or
not dg. is feasible. If feasibility of the control allocation problem
has been ascertained, a second optimization problem is then solved
that minimizes some secondary objective. The objective function
of this second optimization is typically taken to be |W, (6 —6,) |l
subject to G(8) =dg.s and position and rate constraints on 6. This
is commonly referred to as the control sufficiency branch.

The mixed optimization problem that was formulated by Bodson?
combines the two branches of the multibranch control allocation
problem into a single optimization problem. A new parameter € is
introduced for the purpose of prioritizing either control deficiency
or control sufficiency. The mixed optimization problem is stated as

minJ = [[W,(G(6) —daes) 1 + €[Wu(6 — 6,)1I1 (¢Y)

subject to
6min = é = 6max

(€3]

where W, =diag(w,i, Wa2, Wa3, ..., Wap) 15 a weighting matrix
used to prioritize a given control axis; G(8) is a nonlinear, vector-
valued function that maps R" to R"; § is an n x 1 vector of control
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effectors; W, = diag(w,1, w2, Wy3, - - ., W,,) is a weighting matrix
on the control effectors; and 6, is an n x 1 vector of preferred con-
trol effector displacements. Again, it is assumed that n > m. For the
moment we will make the assumption that G(6) = Bé. The mixed
optimization problem can then be posed as a linear programming
problem. The corresponding linear program can then be solved by
any readily available linear programming software.

Bodson? gives one possible transformation to a linear program-
ming problem for the optimization problem defined in Eqgs. (1) and
(2); however, we selected a transformation approach that can be
found in Ref. 4. The transformation relies on the observation that
|x| is the smallest number x; that satisfies both x < x,; and —x < x;.
As a result, we are able to pose the mixed optimization problem as
follows:

minJ = W, 6, + eW,u;, 3)
subject to
6,>0 “
u; >0 )
Bé + 6 > daes (6)
—B6+ 6, > —des @)
6+u,>6, @®)
—6+u, > -6, ©))
Omin < 6 < Oumax 10)

The vectors &, and u, are vectors of slack variables. The reason
for selecting this particular transformation as opposed to the one by
Bodson? is that this formulation allows us to easily implement the
piecewise linear function approximation.

To convert the linear programming problem into a piecewise lin-
ear programming problem, we simply replace B§ with a piece-
wise linear representation of each control moment curve, that is,
L;(8;), M;(8;), and N;(8;). We choose a set of breakpoints for each
§;,i=1,...,n,such that

Ki
8 = Z A0 s® (11)

k=1

K
fo" =1 (12)

k=1

AP =0, if  k>j+1, j=1..K -1 (13
where )Lf“ is a nonnegative interpolating coefficient corresponding
to the i th control effector at breakpoint £, and K; denotes the number
of breakpoints for the i th control effector. Equation (13) is necessary
to ensure that §; is approximated by no more than two adjacent values
of A" If §; falls at a breakpoint, there will only be one value of A;k)
that is nonzero and Eq. (13) is still valid.

The piecewise linear approximations for the control moments as
a function of §; are written as

K

Li=L(®) = ZAE’”LE’” (14)
k=1
Ki

My =M@) =Y 2mP (15)
k=1
Ki

Ni=N@) =Y rON® (16)

k=1

ENGINEERING NOTES 559

where Lfk), M,.(k), and Ni(k) are the values of the rolling, pitching,
and yawing moment curves evaluated at the kth breakpoint for
the ith control effector. We are now able to replace Bé with BA,
where

LY Ly ...oL® o Lk
B=|mM" MP ... M® ... m&E» (17
N NP 0 NP L NE
- -
)\1
@)
)"l
A= (18)
Al
A En)

The vector A is of length

and B is a matrix of size

n
ne X E K;

i=1

where 7. is the number of controlled variables. In the piecewise
linear optimization problem, the constraints dyin < 8 < O, are re-
placed by Afk) > 0. The upper and lower bounds on é are accounted
for in the selection of the breakpoints for each §;. Once we obtain an
optimal solution to the problem, we compute each §; using Eq. (11).
It is also necessary to include in the problem the n constraints that
correspond to Eq. (12).
The resulting optimization problem is

minJ = W,6; + eW,u; (19)
subject to
6, >0 (20)
u; >0 @21
BA + 6, > dye (22)
—BA + 68, > —dye (23)
K;
ZA}")(S[") g > 8y, i=1,....n (24)
k=1
Ki
=Y a80 fu = =, i=1,....n (25
k=1
A0 >0, i=1,...,n, k=1,....K; (26)
Ki
ZA}“:L i=1,....n 27)

A0 =0, it k> j+1, j=1,...,Ki—1 (28)
The constraint given by Eq. (28) forces us to choose one of two
approaches to obtain a solution to the preceding optimization prob-

lem. The first approach is to define a set of binary variables along
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with a set of additional constraints that enforce Eq. (28). The result-
ing optimization problem is then a mixed-integer linear program.
The second approach is to solve the optimization problem as a lin-
ear programming problem using a modified simplex algorithm. To
accommodate Eq. (28), we employ a simple rule-based approach to
determine which ka) are allowed to enter the basis.

Linear Program with Restricted Basis Entry Rules

We desire to solve the preceding optimization problem as a lin-
ear programming problem while imposing the constraint given by
Eq. (28).InRef. 1, Eq. (28) was enforced by introducing binary vari-
ables and appending a set of constraints to the problem formulation.
Note, however, that if Eq. (28) were not present, we would have a
linear programming problem that could be easily solved using the
simplex method. Therefore, as an alternative to the mixed-integer
linear programming formulation given in Ref. 1, we will enforce
Eq. (28) by modifying the the simplex algorithm such that we only
admita Afk) into the basis if Eq. (28) is satisfied, otherwise a new Afk)
is found. These rules are commonly referred to as restricted basis
entry rules.’ A description of the simplex algorithm with restricted
basis entry rules is given hereafter in the algorithm. More details on
the simplex algorithm with restricted basis entry rules can be found
in Refs. 6 and 7.

To demonstrate the application of the restricted basis entry rules,
we consider the simple example given here.

Example
Consider the following optimization problem:

minx; + |x;| (29)
subject to
2X1 + xp = (30)
x>0 (3D
—1<x<1 (32)

To convert this problem to a piecewise linear program that is to
be solved using the simplex algorithm with restricted basis entry
rules, we choose the following breakpoints for x, = {—1, 0, 1}. Then
o= — A0+ 01?413 and |x,| =1 + AP 4+ 1D The trans-
formed optimization problem is then

minx; + A0 + 0A? 2@ (33)
subject to
(34)
2%, — A0 +2® =3 35)
20420 420 =1 36)
x>0 37
+0,28,48 2.0 (38)

We define the decision vector x =[x; AV A@ A®]T. Then T =
¥ ={2, 3, 4} is the set of indices of those elements of the decision
vector that must obey the restricted basis entry rules. Assume that
we have x; and A" in the basis; then ny =1. We compute the
reduced cost c=[0 0 —1 0]. According to ¢, the only variable
that is eligible to enter into the basis is A® because it is the only
element in the set of nonbasic variables that will reduce the cost
function. Given that A® € %, it must obey the restricted basis entry
rules. Next, we determine that AV will exit the basis. According to
the algorithm, A® will enter into the basis because the restricted
basis entry rules are not violated. In this case, A® enters and A("
exits, keeping a single element of X in the basis.
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Note that the adjacency constraint does not appear explicitly in
the optimization problem, but is enforced by careful implementation
of the solution procedure.

A survey of commercial linear programming solvers indicated
that simplex-based solvers with restricted basis entry rules were
unavailable. Instead, the GNU Linear Programming Kit (GLPK),
which is an open-source general linear program and mixed-integer
linear program solver written in C, was modified to accommodate
restricted basis entry rules.

Algorithm: Restricted Basis Entry Rules
Assume that we are given the following piecewise linear pro-
gram: minc’x subject to Ax=>b. We partition x such that Afk),
k=1, ..., K; are adjacent. Let ¥ denote those elements of x that
must obey the restricted basis entry rules. Furthermore, partition
Y ={%, X,, ..., X,} such that X; corresponds to the Afk .Let®
be the set of nonbasic variables that have negative reduced costs.
Furthermore, assume that x; is the next variable that has been cho-
sen to enter the basis B, according to the selected pricing strategy.
Let x, denote the variable that will exit the basis if x; were to enter.
While © # ¢ do
if x; € X then
Let ¥, denote the partition of X to which x; belongs. Let
ny denote the cardinality of X; N B. Define x;,
j=1,...,ng, as those elements of x that are in 3, N B.
if ny =0 then
x; enters the basis
else if ny =1 then
if j=i—1or j=i+1then
x; enters the basis and x, exits the basis
elseif j#i —1or j#i+1and x; =x, then
x; enters the basis and x, exits the basis
elseif j#i —1or j#i+1 and x; # x, then
x; does not enter the basis
end if
else if ny =2 then
if j={i —2,i —1} and x, = x; _, then
x; enters the basis and x, exits the basis
elseif j={i+1,i +2}and x, =x; , then
x; enters the basis and x, exits the basis
else
x; does not enter the basis
end if
end if
else if x; ¢ X then
x; enters the basis and x, exits the basis
end if
if x; € ¥ and does not enter the basis then
Choose the next x; that enters the basis from the current set ®
else if x; enters the basis then
Update basis and compute new reduced costs
end if
end while

Results

In this section, we show that the mixed-optimization problem im-
plemented with piecewise linear approximations of the control mo-
ments and solved using a simplex method with restricted basis entry
rules gives a solution that is comparable to that given by Bolender
and Doman,! where a mixed-integer linear programming formu-
lation was used. We also demonstrate that the mixed-optimization
problem can be solved fast enough that it is a candidate for future
use on a digital flight-control computer equipped with a processor
that is comparable to one found on current desktop computers. For
this study, the GLPK solver was implemented as a C mex file in
MATLAB® and compiled to optimize execution speed. The com-
puter on which this analysis was run was equipped with an Athlon
1800XP + processor, 1.5 GB of RAM, and the Windows 2000 oper-
ating system. We compare the execution time of the simplex method
withrestricted basis entry rules to the time required to solve the same
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optimization problem using the mixed-integer linear programming
formulation of the mixed-optimization problem. The mixed-integer
linear programs are solved using the branch-and-bound solver in
GLPK.

Simulation Results

For these results, the vehicle, trajectory, and failure cases are
the same as given in Ref. 1. Presented in Figs. 1 and 2 are the
time histories for the control moment error and the control effec-
tor command time histories. In Fig. 1, the moment error is defined
by log,, IBA — dgell>. Recall that B is the piecewise linear ana-
log to the B matrix that one encounters when using a linear ap-
proximation; therefore, the product BA is the linear interpolation
of the control moment data. We see that the modeling errors are
negligible until the rudder failure is introduced at the 40 s mark.
Between 40 and 60 s there is a control deficiency; therefore, the de-
sired moment dg. is not feasible under the failure conditions. The
performance of the mixed-optimization is identical to that given
in Ref. 1 for the two-branch, piecewise linear control allocation
problem.

The control surface time histories given in Fig. 2 are the control
deflections returned by the control allocator. The control surface
deflections compare favorably. There are very minor differences in
the right flap deflection after the rudder failure is introduced, but
this discrepancy does not appear to be an issue.
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Fig. 1 Difference between commanded and applied moments.
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Fig. 2 Commanded control surface deflections.
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Table 1 Solver execution time statistics: Athlon

XP1800 +/Windows 2000
Method  Mean,s  Standard deviation, s  Maximum, s
MILP 0.0885 0.0423 0.4310
RBE 0.0083 0.0042 0.0700

Table 2 Mean and standard deviation of ||6]|»

Method Mean, deg Standard deviation, deg
MILP 18.2365 8.6293
RBE 18.2657 8.5736

Table 3 Mean and standard deviation of ||[BA — dges||2

Method Mean Standard deviation
MILP 4.4547 x 10717 1.0709 x 1010
RBE 1.4139 x 1073 2.6927 x 10~*

Computational Performance Results

To compare execution time and solution accuracy for the mixed-
integer linear program (MILP) and the linear programming formu-
lation of the control allocation problem, we consider a fixed flight
condition and 10,000 different control moment vectors. Each com-
ponent of the control moment vector was selected randomly from
a uniform distribution. For each control moment vector, the control
allocation problem was solved using both an MILP solver and a
simplex algorithm with restricted basis entry rules. The preference
vector was taken to be §, = 0 for all cases. The execution time of
both approaches was measured using the standard C library func-
tion clock() and is given in Table 1. It is apparent that the simplex
method, on average, is an order of magnitude faster than the MILP
approach. If it is assumed that the typical sample time of a digi-
tal flight-control system is 0.02 s, then the solution time given in
Table 1 for the simplex method with restricted basis entry is more
than adequate for practical application given a processor that is in
the same class as that tested earlier. The mean control deflection for
each method is given in Table 2. Note that for this particular set of
random d., the mean deflections are nearly the same for both ap-
proaches. On the other hand, Table 3 shows a significant difference
in the average moment error. There were a small number of dg for
which the simplex method with restricted basis entry rules failed to
find a set of control deflections that would produce a feasible mo-
ment, whereas the MILP formulation succeeded. The average error
for these vectors is 0.4938 and is the cause for the poor correlation
between the MILP solution and the simplex with restricted basis
entry rules. For each of these vectors, the control deficiency occurs
in the yawing moment. This deficiency occurs in about 0.5% of the
cases that were tested. The cause of these deficiencies are related
to an early termination of the simplex algorithm on a solution that
is not a local optimum. In these cases, there are two restricted ba-
sis variables, A;k) and Af’“’ D that are in the basis where one of the
variables has a value of one and the other has value of zero due to
roundoff error. In such a case, there may be a variable that has a
negative cost coefficient, but, due to the restricted basis entry rules,
is not eligible to enter the basis. Therefore, the algorithm terminates
prematurely. This occurs when a vertex of the simplex lies exactly
on a constraint line. Note, however, that if the early termination
cases are removed, the simplex method with restricted basis entry
rules has a mean error of 2.7381 x 10~!7 and a standard deviation
of 3.4196 x 10717,

Given that the control allocation problem, when solved using the
modified simplex algorithm, was subject to early termination, it was
hypothesized that the choice of §, could have an effect on the so-
lution returned by the control allocator. To study this hypothesis,
we selected one of the cases that terminated early, randomly chose
1000 preference vectors, and resolved the control allocation prob-
lem. In this case, the simplex solver is sensitive to the selection
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of 6, because approximately 28% of the cases terminated early.
On the other hand, the MILP formulation that was solved by the
branch-and-bound algorithm was insensitive to the selection of §,
because an optimal solution was always found. Unfortunately, there
is no way to determine a priori whether the simplex algorithm will
terminate early for a given §,, and dg.s. The same exercise was re-
peated for a moment vector that did not terminate early when solved
using the simplex with restricted basis entry. In this case, both the
simplex and the branch-and-bound solvers showed no sensitivity to
the choice of 6,,. The question of whether there exists a means by
which early termination of the simplex algorithm can be avoided
remains an open problem.

Conclusions

The approach to nonlinear control allocation that was presented
assumed that control moments generated by the deflection of aero-
dynamic surfaces were separable functions. This assumption allows
one to approximate any separable nonlinear function by a piecewise
linear function in the control allocation problem. As a result, we
were able to cast a nonlinear optimization problem as a linear pro-
gramming problem where a subset of the decision variables are
subject to restricted basis entry rules. Although this still gives an
approximate solution to the control allocation problem, it is much
more accurate than the traditional methods that assume linear re-
lationships between the control moments and the control effector
positions. It was subsequently shown that a simplex algorithm that
enforces the restricted basis entry rules can be solved fast enough for
it to be a candidate for use in a real-time flight-control system, given
a processor that is comparable to that available on today’s desktop
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personal computers. However, the issue of early termination of the
simplex algorithm must be addressed to ensure that when a feasi-
ble solution to the control allocation problem exists, it is always
found.
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